
Access Answers: What a drag it is (getting old?), Part 1
Doug Steele

Doug tries to address commonly asked questions from Access developers. This month, he looks at
how to add drag-and-drop to an Access application.

Can I add drag-and-drop capabilities to an Access application?

The ability to drag-and-drop is so easy to implement in Visual Basic, but the Access form model is
different, and it's not nearly as easy to implement drag-and-drop in Access. However, it is possible to do,
although you need to control it all manually.

Just to be perfectly clear, I'm talking about dragging and dropping data, not the controls themselves. That
means that some controls are not conducive to drag and drop. For example, you can't drag a Command
button or a Toggle button. As well, some controls are mutually incompatible for dragging and dropping.
While you might be able to drag a check box, what would you expect to happen if you dropped it on a list
box? On the other hand, if you dragged a check box to a text box, you might want the text box to display
True or False, depending on the state of the check box when you dragged it. Rich-text boxes already
support drag-and-drop, so I'm going to ignore them.

Let's consider what makes up a drag-and-drop event. First, you need to detect that the drag has started. Once
you've got a drag operation underway, you need to be able to detect when (and where) the drag has stopped.
If the drag stopped somewhere that can accept a drop, you need to detect that fact. Finally, if you've
detected a drop, you need to handle the drop event. Microsoft has KB articles that demonstrate one way to
implement these events: http://support.microsoft.com/?id=137650 for Access 95/97,
http://support.microsoft.com/?id=233274 for Access 2000 and http://support.microsoft.com/?id=287642 for
Access 2002 (although the code is identical in each article). In this column, I'm going to extend how the
implementation of that functionality.

Dragging something requires that the mouse be depressed while dragging. This means that to be able to
detect when a drag has started, you can utilize the MouseDown event for each control from which you want to
be able to drag. Even if you're actually not going to drag from the control when you activate the MouseDown
event, there's no problem with initializing whatever's required, just in case.

To be able to detect when a drag has stopped, use the MouseUp event for each control from which you want
to be able to drag. (If a mouse button is pressed while the pointer is over a control, that control receives all
mouse events up to and including the last MouseUp event, regardless of where the mouse pointer actually is
when the mouse button is released.).

The actual code you need to add to the MouseDown and MouseUp events of each control you want to be
capable of being dragged is pretty simple. When the MouseDown event occurs, you want to set global
references to the control itself, and to the form on which the control exists, as well as set a flag to indicate
that a Drag has started. I use 3 module-level variables:

� mfrmDragForm (the form from which the value is being dragged)

� mctlDragCtrl (the control on mfrmDragForm from which the value is being dragged)

� mbytCurrentMode (a flag indicating whether the current action is Dragging, Dropping or nothing)

The easiest way I know of doing this is to have a DragStart routine, which can be called from each
MouseDown event. In the VBA code associated with your form, you'll need something like:

Private Sub Text1_MouseDown (Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 Call StartDrag(Me)

End Sub

And in a module, you'll have something like:

Sub StartDrag (SourceForm As Form)

 Set mfrmDragFrm = SourceForm
 Set mctlDragCtrl = Screen.ActiveControl
 mintCurrentMode = DRAG_MODE

End Sub

(NOTE: You shouldn't use Screen.ActiveForm in place of SourceForm because you may be dragging from
a subform. It was a somewhat arbitrary decision on my part not to pass the active control as a parameter,
based largely on the fact that it means less typing in each MouseDown event. If it makes you feel better, you
can pass the control as well!)

I like to take this one step further, though, since I consider it a good idea to give the user visual feedback. I
want to change the mouse cursor to indicate that a drag is occurring. Without going into the actual code
used to change the cursor (I use code similar to that at http://www.mvps.org/access/api/api0044.htm,
although I name my functions SetMouseCursor and SetMouseCursorFromFile, rather than MouseCursor
and PointM), I use a different icon depending on whether I'm dragging a single value, or multiple ones. This
means that I need to be able to detect which is the case. To do this, I add a 4th variable to what's set in
StartDrag: mbytDragQuantity (a flag to indicate whether we're dragging a single value, or multiple
values). I then have a function SetDragCursor that uses that variable to determine which icon to use for the
mouse cursor. Remembering that out of the standard Access controls, only the list box supports multi-
selection, that means that the code for StartDrag actually looks more like:

Sub StartDrag(SourceForm As Form)

 Set mfrmDragForm = SourceForm
 Set mctlDragCtrl = Screen.ActiveControl
 mbytCurrentMode = DRAG_MODE
 If TypeOf mctlDragCtrl Is ListBox Then
 If mctlDragCtrl.ItemsSelected.Count > 1 Then
 mbytDragQuantity = MULTI_VALUE
 Else
 mbytDragQuantity = SINGLE_VALUE
 End If
 Else
 mbytDragQuantity = SINGLE_VALUE
 End If
 SetDragCursor

End Sub

(If you're using other controls that support multi-select, you'll need to add additional cases in the TypeOf
check)

To detect when the dragging stops, have a StopDrag event that you can call from the MouseUp event of
every control from which you want to be able to drag:

Private Sub Text1_MouseUp (Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 Call StopDrag

End Sub

StopDrag looks something like:

Sub StopDrag()

 mbytCurrentMode = DROP_MODE
 mbytDragQuantity = NO_MODE
 msngDropTime = Timer()
 SetDragCursor

End Sub

In addition to resetting the mode from DRAG_MODE to DROP_MODE, the drag quantity from either
SINGLE_VALUE or MULTI_VALUE to NO_MODE and resetting the mouse cursor, it also sets a variable
msngDropTime to the value of the built-in Timer function. This is important, since it's used in the next
procedure to be called, DetectDrop.

Once you know that the dragging has stopped, you need to determine whether the drag ended on a control
capable of accepting a drop. As soon as the MouseUp for the previous control has been handled, the
MouseMove event of the new control should fire. That means that if you want a control to be capable of
accepting a drop, you should be able to use the MouseMove event of that control to invoke the DetectDrop
procedure:

Private Sub Text2_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)

 Call DetectDrop(Me, Me!Text2, Button, Shift, X, Y)

End Sub

The DetectDrop procedure itself is a little more complex than the two others I've shown you so far:

Sub DetectDrop(DropForm As Form, DropCtrl As Control, _
 Button As Integer, Shift As Integer, _
 X As Single, Y As Single)

' If a drop hasn't happened, then exit.
 If mbytCurrentMode <> DROP_MODE Then
 SetDragCursor
 Exit Sub
 Else
 mbytCurrentMode = NO_MODE

 If Timer - msngDropTime > MAX_DROP_TIME Then
 Exit Sub
 Else
' Did we drag/drop onto ourselves?
 If (mctlDragCtrl.Name <> DropCtrl.Name) Or _
 (mfrmDragForm.hWnd <> DropForm.hWnd) Then
' If not, then a successful drag/drop occurred.
 Call ProcessDrop(mfrmDragForm, mctlDragCtrl, _
 DropForm, DropCtrl, _
 Button, Shift, X, Y)
 End If
 End If
 End If

End Sub

The first thing done is to check whether a Drop has occurred. I do this by checking whether
mbytCurrentMode has been set to DROP_MODE by StopDrag. If it has, I then check to make sure that this
invocation of DetectDrop was called by the MouseMove event that immediately followed the MouseUp event
that invoked StopDrag. While I'm sure there are other ways of doing this, I find that comparing the results
of the Timer function to the value of msngDropTime set by StopDrag is effective. If this is the appropriate
invocation, I check that we haven't just dropped onto ourselves (this is necessary for those controls that are
set up for both dragging from and dropping to). Note the use of the hWnd properties when comparing the two
saved Form references. This is to be able to handle those situations where there are multiple instances of the
same form open. It's possible that you might be trying to drag from a certain control on instance one of the
form to the same control on instance two, so you can't just rely on the name of the form.

Once it's known that a drag-and-drop sequence has occurred, the last remaining thing to do is handle it. As
you've probably guessed, this can be the most complicated part, especially when you allow dragging from
controls which support multiselected values. As I alluded to earlier, you may have to make decisions about
what controls can drag to which other controls, as well as decisions about what to do if you drag
multiselected values onto controls that are only capable of showing a single value.

The simplest form of the ProcessDrop routine is something like:

Sub ProcessDrop(DragForm As Form, _
 DragCtrl As Control, _
 DropForm As Form, _
 DropCtrl As Control, _
 Button As Integer, _
 Shift As Integer, _
 X As Single, _
 Y As Single)

 DropCtrl = DragCtrl

End Sub

In other words, copy the current value of the control referenced by DragCtrl to the control referenced by
DropCtrl. (Value is the default property for most controls. I suppose that to be completely correct, I should
have used DropCtrl.Value = DragCtrl.Value) In actual practise, though, it's seldom that simple. If
DragCtrl is a multiselect list box, for example, then as a bare minimum, you need to process each selected
entry in that list box. If you're dragging to a multiselect list box to a text box, you might want to concatenate
each of the selected entries:

Sub ProcessDrop(DragForm As Form, _
 DragCtrl As Control, _
 DropForm As Form, _
 DropCtrl As Control, _
 Button As Integer, _
 Shift As Integer, _
 X As Single, _
 Y As Single)

Dim strSelectedItems As String
Dim varCurrItem As Variant

 If TypeOf DragCtrl Is ListBox Then
 If DragCtrl.ItemsSelected.Count > 0 Then
 For Each varCurrItem In DragCtrl.ItemsSelected
 strSelectedItems = strSelectedItems & _
 DragCtrl.ItemData(varCurrItem) & ", "
 Next varCurrItem
 If Len(strSelectedItems) > 2 Then
 strSelectedItems = Left$(strSelectedItems, _
 Len(strSelectedItems) - 2)
 End If
 DropCtrl = strSelectedItems
 Else
 DropCtrl = DragCtrl
 End If
 Else
 DropCtrl = DragCtrl
 End If

End Sub

Here, if DragCtrl is a listbox with more than one row selected, I loop through all of the items in the
ItemsSelected collection of that list box, concatenating each value to a string, and then assign the value of
that string to the DropCtrl. Note that if the bound column of the listbox isn't the value you want to display,
you'll have change the line value DragCtrl.ItemData(varCurrItem) to something more appropriate, such
as DragCtrl.Column(2, varCurrItem). However, if DropCtrl is another listbox, maybe what you want to
do is copy (or move) the selected items from the source listbox to the target listbox. How you do this, of
course, depends on how you populated the listboxes. The accompanying download database has a sample
where I demonstrate how to drag from one listbox to another. In this case, the two list boxes are based on a
table which has a Selected field in it. One list box represents those records in the table for which the
Selected field is False, while the other list box represents those records for which the Selected field is True.
This means that ListBoxExample (which I call from ProcessDrop) must be able to update the table, and
requery both listboxes:

Sub ListBoxExample(DragForm As Form, _

 DragCtrl As Control, _
 DropForm As Form, _
 DropCtrl As Control, _
 Button As Integer, _
 Shift As Integer, _
 X As Single, _
 Y As Single)

Dim dbCurr As DAO.Database
Dim strSQL As String
Dim strMessage As String
Dim strWhere As String
Dim varCurrItem As Variant

 Set dbCurr = CurrentDb()

 strSQL = "UPDATE Customers SET Selected=" & _
 IIf(DragCtrl.Name = "lstListBox1", "True", "False")

 If (Shift And acShiftMask) = 0 Then
 If DragCtrl.ItemsSelected.Count > 0 Then
 For Each varCurrItem In DragCtrl.ItemsSelected
 strWhere = strWhere & "'" & _
 DragCtrl.ItemData(varCurrItem) & _
 "', "
 Next varCurrItem
 If Len(strWhere) > 2 Then
 strWhere = " WHERE [CustomerID] IN (" & _
 Left$(strWhere, Len(strWhere) - 2) & ")"
 End If
 Else
 strWhere = " WHERE [CustomerID] = '" & _
 DragCtrl & "'"
 End If
 End If

 If Len(strWhere) > 0 Then
 strSQL = strSQL & strWhere
 End If

 dbCurr.Execute strSQL, dbFailOnError

 DragCtrl.Requery
 DropCtrl.Requery

End Sub

Here, I check from which of the two list boxes I'm dragging. If I'm dragging from lstListBox1 (to
lstListBox2), I know that I need to change the dragged records from not selected to selected. If I'm dragging
from lstListBox2, I know I need to change them to not selected.

You may have noticed that in this case I'm using one of the other values passed to the routine from the
MouseMove event, specifically the Shift value. This allows me to add the feature that if you drag from one
box to the other while holding down the Shift key, all of the records are dragged, not simply the one(s)
you've actually selected. (It also allowed me to justify why I'm passing those values from the MouseMove
event to the DetectDrop routine, and then to the ProcessDrop routine!) The code If (Shift And
acShiftMask) = 0 is how I check to determine whether or not the Shift key is depressed: that expression
will be non-zero if the shift key is depressed when the mouse is dragged. If it was depressed, I don't bother
with a WHERE clause in my SQL statement: I simply change all the Selected values to either True or False. If
the shift key is not depressed, I loop through the list of all selected rows in the list box (using the list box's
ItemsSelected collection) and add each one to the WHERE clause.

Once I've created my SQL string, I execute it. (Aside: I feel that using the Execute method of the DAO
Database object to run an SQL statement is better than using the DoCmd.RunSQL approach because it doesn't
issue the "You're about to update n records…" message box, plus it allows you to trap any errors that may
occur running the SQL.)

Now that I've updated the table appropriately, I requery the two list box controls, so that their content
reflects the updated table.

Other dragged controls will require still different handling, and how you handle each dragged control may
depend on what the drop control is.

For example, if you want to be able to drag check boxes to text boxes, presumably what you'd want
appearing in the text box is "True" or "False". On the other hand, if you drag a check box onto another
check box, you probably would want the drop check box to take on the same value as the dragged one. You
can accomplish that using code like:

 If TypeOf DragCtrl Is CheckBox Then
' Assume we only allow dropping check boxes onto text boxes or check boxes
 If TypeOf DropCtrl Is TextBox Then
 DropCtrl = IIf(DragCtrl, "True", "False")
 ElseIf TypeOf DropCtrl Is CheckBox Then
 DropCtrl = DragCtrl
 Else
 End If
 End If

I'll give one more example. If you have an OptionGroup on your form, it will have a numeric value
associated with it. You could drag that numeric value to a textbox, or you could determine the text
associated with the selected option, and drag that text. In your code in ProcessDrop, you would have to
specifically determine which textbox is to get just the number, and which is to get the text, using code
similar to:

 If TypeOf DragCtrl Is OptionGroup Then
' Assume we only allow dropping option groups onto text boxes
 If TypeOf DropCtrl Is TextBox Then
 Select Case DropCtrl.Name
 Case "txtTextBox1"
 DropCtrl = DragCtrl
 Case "txtTextBox2"
 DropCtrl = ReturnSelectedOption(DragCtrl)
 Case Else
 End Select
 Else
 End If
 End If

where ReturnSelectedOption is something like:

Function ReturnSelectedOption(_
 OptionGroup As OptionGroup) As String

Dim ctlCurr As Control
Dim booGetText As Boolean
Dim strSelected As String

 For Each ctlCurr In OptionGroup.Controls
 If TypeOf ctlCurr Is OptionButton Or _
 TypeOf ctlCurr Is CheckBox Then
' Option Buttons and Check Boxes have labels
' associated with them. We need to determine
' which one is selected, and then determine
' the label associated with it.
 If ctlCurr.OptionValue = OptionGroup.Value Then
 strSelected = ctlCurr.Name
 booGetText = True
 Exit For
 End If
 ElseIf TypeOf ctlCurr Is ToggleButton Then
' Toggle Buttons has captions on them. Once we
' determine which one is selected, we then just
' need to determine its caption.
 If ctlCurr.OptionValue = OptionGroup.Value Then
 ReturnSelectedOption = ctlCurr.Caption

 booGetText = False
 Exit For
 End If
 End If
 Next ctlCurr

 If booGetText Then
' For each label on the Option Group, determine its
' parent control's name and compare it to the name of
' the selected control.
 For Each ctlCurr In OptionGroup.Controls
 If TypeOf ctlCurr Is Label Then
 If ctlCurr.Parent.ControlName = strSelected Then
 ReturnSelectedOption = ctlCurr.Caption
 Exit For
 End If
 End If
 Next ctlCurr
 End If

End Function

Hopefully you'll be able to take these various building blocks and combine them into a module that will
meet your specific needs.

Note that I've only addressed how to drag and drop from one control to another control in the same Access
application. Next month, we'll take a look at what can be done to drag from non-Access applications to
controls on Access applications.

Doug Steele has worked with databases, both mainframe and PC, for many years. Microsoft has recognized him as an
Access MVP for his contributions to the Microsoft-sponsored newsgroups. Check http://I.Am/DougSteele for some
Access-related links. You can reach him at AccessHelp@rogers.com, but please note that personal replies are not
guaranteed. However, please don't hesitate to send ideas for future columns or, even better, complete columns!

