
Access Answers: We get letters…
Doug Steele

Each month, Doug tries to address commonly asked questions from Access developers. This
month, he passes on feedback he’s received from readers about past columns.

One of the topics in the June column was a discussion of how to handle embedded quotes in SQL
statements.

Adrian Murphy pointed out, quite correctly, that I neglected to mention that Parameter queries are another
approach to solving the problem of having embedded quotes in the values being used in SQL statements.

He sent along the following code sample:

Sub ParameterQueryAvoidingCharProblems()

Dim qdf As QueryDef
Dim rs As Recordset
Dim sSQL As String
Dim sText As String

 sText = "Peter’s ""Sweatshop"""
 sSQL = "PARAMETERS [PAR1] TEXT; " & _
 "SELECT * FROM TABLE1 " & _
 "WHERE COMMENT=[PAR1]"
 Set qdf = CurrentDb.CreateQueryDef("", sSQL)
 qdf.Parameters("[PAR1]") = sText
 Set rs = qdf.OpenRecordset

 Do While Not rs.EOF
 'etc

 Loop

 rs.Close
 Set rs = Nothing
 Set qdf = Nothing

End Sub

If you want to be able to use wildcards, change the equal sign to LIKE, and include the wildcard
character(s) in the string you pass:

Sub ParameterQueryAvoidingCharProblems()

Dim qdf As QueryDef
Dim rs As Recordset
Dim sSQL As String
Dim sText As String

 sText = "*ter’s ""Swe*"
 sSQL = "PARAMETERS [PAR1] TEXT; " & _
 "SELECT * FROM TABLE1 " & _
 "WHERE COMMENT LIKE [PAR1]"
 Set qdf = CurrentDb.CreateQueryDef("", sSQL)
 qdf.Parameters("[PAR1]") = sText
 Set rs = qdf.OpenRecordset

 Do While Not rs.EOF
 'etc

 Loop

 rs.Close
 Set rs = Nothing
 Set qdf = Nothing

End Sub

As you can see, when you’ve defined a parameter of type Text (named PAR1 in the example above), you
can simply assign the string value, quotes and all, to the parameter and run your query, without having to
worry about using a custom function to “adjust” the quotes.

Of course, it won’t work in Filters, which was what I used in the sample form in the sample database that
accompanied the June column, but it’s certainly worth-while remembering in many situations. Thanks for
the reminder, Adrian.

The May column dealt with ways of treating controls as a group, usually for the purposes of making
them visible or not.

Stephen Charles wrote with an interesting twist on using the Tag property of each control to allow multiple
grouping. He assigns each group a binary value, sets the tags equal to the sum of the binary value(s) of the
group(s) to which it belongs, and then uses AND to do a bitwise comparison to determine whether or not
each control is in the specific group of interest. For example, he might have 3 groups that he’s going to use
on a particular form, so he’d think of the groups as 1, 2 and 4. It’s fairly straight-forward to see that controls
that should only be visible as part of the first group would have a Tag value of 1, those that should only be
visible as part of the second group would have a Tag value of 2, and those that should only be visible as
part of the third group would have a Tag value of 4. However, if a particular control should be visible as
part of both the first and second groups, its Tag value would be 3, if it should be visible as part of both the
first and third groups, its Tag value would be 5, and so on for all of the possible combinations.

In a specific example he sent, he used the same form to capture input for a number of different reports. He
had a combo box that listed the various reports of interest plus had a number associated with each report (a
hidden column in the combo box) that he could use to indicate which controls he wanted visible for each
report. The code associated with the combo box’s AfterUpdate event was then something like:

For intLoop = 0 To (Me.Controls.Count – 1)
 If Me.Controls(intLoop).Tag <> "" Then
 Me.Controls(intLoop).Visible = False
 If (Val(Me.Controls(intLoop).Tag) And _
 Me.cboReportName.Column(2)) _
 = Val(Me.Controls(intLoop).Tag) Then
 Me.Controls(intLoop).Visible = True
 End If
 End If
Next intLoop

Stephen even sent an example of how this works, which I’ve included in the downloadable database
associated with this month’s column.

This strikes me as a fairly straight-forward approach. In fact, I think it’s a lot simpler than the approach I
used of having the relationships between the controls and the groups to which they belonged stored in a
table. Thanks for the suggestion, and for the sample, Stephen.

Jay Selman wrote to indicate how he makes groups of controls disappear. He places all the controls that he
may want to disappear on a tab page control. All he has to do is set the page visibility to false and all the
controls on the tag page are hidden. This works for him because the controls are normally grouped together
on the form anyway. In addition, if he doesn’t want a tab control, he just sets the tab style to none and the
back style to transparent so the tab control itself is hidden.

In the February column I wrote about how to simulate cue prompting

Chris Weber, who you’ve doubtlessly read in past issues of this publication, was disappointed that it was
“only applicable to unbound text boxes, rich text boxes, and combo boxes in Access”, and also thought that
the code-heavy implementation didn’t really explore the object properties available to Access developers,
so he took it upon himself to try a simpler approach.

He felt there had to be an easier way and, to be truly useful, a way to have cues within bound controls. His
first thought was that the cues could be implemented as labels placed beneath transparent controls. When

the control got focus, it would, by default, appear non-transparent. When the user left the control, if the
control was Null, its Back Style should remain Transparent allowing the cue to show through. If not, its
Back Style should be set to Normal obscuring the label. To try this out, he decided to work with the
Customers form in the Northwinds database.

The first step was to change the form to Standard style using the Format | Autoformat menu selection. He
then highlighted all of the labels and set the Back Color property in the property sheet to white (16777215),
the Border Style to Transparent, and the Fore Color to a dark grey (10263706). Next, he held down the shift
key, lassoed the bound controls and set their Back Style to Transparent. Finally, to set the cues in each
label, he did the same as in my example: he changed each to “Enter the fieldname” and dropped the colon
from each. After these changes, the form looked like it does in Figure 1.

Figure 1: Northwinds Customer form: Initial Changes

The next step was to align the labels behind their corresponding controls. To get a perfect fit, Chris first
used the Format | Size | To Widest menu selection on each pair (cursing all the while that Access doesn’t
have a Ctrl-Y (Repeat Formatting) like Excel or Word!). Then, he used Ctrl-A to select all the controls and
chose Format | Size | To Tallest so that they’d all be the same height. To align each of the labels with its
respective control, he used a little known feature of Access: If a label is nudged behind a control, you can
get the label to align perfectly behind the control through the Format | Align menu selections. If the label is
not already overlapping, it will just slam as closely as possible to the other control. Therefore, pushing each
label a bit behind its parent control, and then selecting each pair and selecting Format | Align | Right lined
them all up perfectly.

You can see the results in Figure 2. While the right-hand version (which shows what the form will look like
for a new record) looks good, unfortunately some work is still required when the form is running and
opened to an existing record (the left-hand version).

Figure 2: Modified Northwinds Customer form: First attempt

It was at this point that a fundamental difference in philosophy between Chris and me became evident. As
you’ve probably gathered from reading my columns over the past months, I’m a code jockey. I prefer using
code to accomplish virtually everything. I feel it lets me know exactly what’s going on. I also feel it makes
the application easier to understand for others who have to support it: they can see that there’s code causing
whatever is happening on the form, rather than having to look for specific properties that have been set. It
also provides me with a space to write comments. Chris, on the other hand, feels that writing code should be
a last resort. Consequently, his first approach to solve this problem was to try and use Conditional
Formatting.

He began by resetting the Control Source of the Company Name field and then choosing Conditional
Formatting under the Format menu. He wanted the Back Color of the Company Name control to be white
and non-transparent if the control has data. Figure 4 shows what he attempted.

Figure 3: Attempt to use Conditional Formatting

He then used the Format Painter on the toolbar to transfer this condition to all of the other controls, and
updated the name of the field in brackets for each control. However, no matter how he tried, he couldn’t get
the expression to evaluate properly: the controls always appeared blank (i.e. non-transparent with a white
background). In fact, even after deleting the conditions, the controls still appeared blank. (It turns out that

setting the condition for a change of Back Color automagically changed each control’s Back Style from
Transparent to Normal.)

Fortunately, the code required to make the Back Style of a control Normal when it has data, and
Transparent when it doesn’t is pretty straightforward: essentially a single line of code! If you look in the
Help file for details about the BackStyle property, you’ll see its values are either Transparent (0) or Normal
(1). All that’s required is to set the BackStyle property to the appropriate value, depending on whether the
control is Null or not. The code that does this checking would need to be in the form’s Current event (to set
the properties properly as each new row in the recordset is read), as well as in the AfterUpdate event of each
control.

By setting the Tag property of each of the control for which you want this effect to be used to the same
value (Chris used “CueControl”), you can write a generic function to be used for the form’s Current event
(set the form’s Current event to =CueControl_Reset([Form])). Chris’s function to do this is:

Function CueControl_Reset(frm As Form)
On Error Resume Next
Dim ctl As Control

 For Each ctl In frm
 If ctl.Tag = "CueControl" Then
 ctl.BackStyle = IsNull(ctl) + 1
 End If
 Next ctl

End Function

While that works, my preference is not to depend on True being -1, so I’d rewrite that as:

Function CueControl_Reset(frm As Form)
On Error Resume Next
Dim ctl As Control

 For Each ctl In frm
 With ctl
 If .Tag = "CueControl" Then
 .BackStyle = IIf(IsNull(ctl), 0, 1)
 End If
 End With
 Next ctl

End Function

Similarly, you can write a generic function to use on each control’s AfterUpdate event (In other words,
select all of the data-aware controls and assign =CueControl_AfterUpdate() to their AfterUpdate events).
Chris’s code function is:

Function CueControl_AfterUpdate()
 Screen.ActiveControl.BackStyle = _
 IsNull(Screen.ActiveControl) + 1
End Function

but I’d rewrite that as:

Function CueControl_AfterUpdate()
 With Screen
 ActiveControl.BackStyle = _
 IIf(IsNull(.ActiveControl), 0 , 1)
 End With
End Function

Figure 4 shows how the form looks after making these changes.

Figure 4: Modified Northwinds Customer form: Final version

Notice how much smaller the form is compared to the original. For some forms you can omit the labels and
save a lot of space. With screen space at a premium, fewer interfaces can contain more data, which can
simplify navigation in your application.

Good work, Chris! It’s certainly a good extension.

Doug Steele has worked with databases, both mainframe and PC, for many years. Microsoft has recognized him as an
Access MVP for his contributions to the Microsoft-sponsored newsgroups. Check http://I.Am/DougSteele for some
Access information, as well as Access-related links. You can reach him at AccessHelp@rogers.com, but note that
personal replies are not guaranteed. However, please don't hesitate to send ideas for future columns or, even better,
complete columns!

