
Access Answers: An average column: I mean, what mode is your
median?
Doug Steele

Doug tries to address commonly asked questions from Access developers. This month, he looks at
different ways to calculate "measures of central tendency": mean, median and mode.

How can I calculate the Median for my data?

Before launching into a solution for this question, let's go over some terminology. You may have noticed

the phrase "measures of central tendency" used in the introduction above. This is a term used in Statistics.

One of the best ways to summarize a set of data and still retain part of the information is to represent the set

with a single value. Measures of Central Tendency are ways of calculating a number that is representative of

an entire list of numbers. There are 3 commonly used measures of central tendency:

• Mean: The arithmetic average of a set of numbers (the most common measure of central tendency)

• Median: The value of the middle item when the data are arranged from lowest to highest (assuming an

odd number of observations) or the average value of the two middle items when there's an even number

of observations)

• Mode: The observation that occurs most frequently in a data set.

Most of you are probably familiar with the concept of mean (or which is often referred to as "arithmetic

average"), but the other two measures might not be as familiar to you, so an example might be in order.

Let's assume you throw 3 dice a total of 12 times, and get the following results:

Roll Total
1 14

2 13

3 8

4 8

5 12

6 8

7 10

8 9

9 5

10 3

11 17

12 10

Table 1: DiceRolls

It's easy to calculate the mean: that's (14+13+8+8+12+8+10+9+5+3+17+10)/12 = 9.75

To find the median, arrange the 12 totals in order (it doesn't really matter whether you arrange them in

ascending or descending order, although it's more common to use ascending order): 3, 5, 8, 8, 8, 9, 10, 10,

12, 13, 14, 17. Since there's an even number of samples, the median will be the average value of the sixth

and seventh elements. The sixth element is 8, the seventh element is 11, therefore the median is (9+10)/2 =

9.5

Finally, the mode is the value that occurs most often. With the elements arranged in order in the paragraph

above, it's fairly straight-forward to see that 8 occurs more times than any other value, so the mode is 8.

Okay, so how can we calculate these values in Access?

Access already has a function, DAvg, that will compute the mean of a set of values in a specified set of

records (a domain). To calculate the mean of our DiceRolls table above, the code would be:

?DAvg("Total", "DiceRolls")

 9.75

Unfortunately, Access does not have similar functions to compute Median and Mode, so we'll have to create

our own. To be consistent with DAvg (and other Domain functions), I'll call the function DMedian, and

name the arguments Expr, Domain and Criteria:

Function DMedian(_

 Expr As String, _

 Domain As String, _

 Optional Criteria As String = "" _

) As Variant

Expr is an expression that identifies the field containing the numeric data for which you want the median. It

can be a string expression identifying a field in a table or query, or it can be an expression that performs a

calculation on data in that field. Domain is a string expression identifying the set of records that constitutes

the domain (a table name or a query name). Criteria is an optional string expression used to restrict the

range of data on which the DMedian function is performed. Criteria is equivalent to the WHERE clause in

an SQL expression, without the word WHERE. If criteria is omitted, the DMedian function evaluates Expr

against the entire domain. Note that any field that is included in criteria must also be a field in Domain:

Dim dbMedian As DAO.Database

Dim rsMedian As DAO.Recordset

Dim dblTemp1 As Double

Dim dblTemp2 As Double

Dim lngOffset As Long

Dim lngRecCount As Long

Dim strSQL As String

Dim varMedian As Variant

Create a SQL string that will return Expr sorted. If a value was supplied for Criteria, include it in the SQL

statement. Note that Null values will be ignored. This is consistent with how DAvg works.

 strSQL = "SELECT " & Expr & " AS Data " & _

 "FROM " & Domain & " "

 strSQL = strSQL & _

 "WHERE " & Expr & " IS NOT NULL "

 If Len(Criteria) > 0 Then

 strSQL = strSQL & "AND (" & Criteria & ") "

 End If

 strSQL = strSQL & "ORDER BY " & Expr

Instantiate a recordset, using the SQL Statement created above, to return all of the relevant data from the

domain:

 Set dbMedian = CurrentDb()

 Set rsMedian = dbMedian.OpenRecordset(strSQL)

Make sure that records were actually returned.

 If rsMedian.BOF = False And _

 rsMedian.EOF = False Then

Assuming records were returned, determine how many. To do this, move to the end of the recordset so that

RecordCount will return an accurate count. If there are an odd number of records (lngRecCount Mod 2 <>

0), determine how many elements backwards to move to reach the midpoint of the recordset, and the

Median will be that element.

 rsMedian.MoveLast

 lngRecCount = rsMedian.RecordCount

 If lngRecCount Mod 2 <> 0 Then

 lngOffset = ((lngRecCount + 1) / 2) - 2

 If lngOffset >= 0 Then

 rsMedian.Move -lngOffset - 1

 End If

 varMedian = rsMedian("DataValue")

 Else

If there are an even number of records, move backwards to the element after the midpoint of the recordset

and retrieve that value. Move backwards once more to the element before the midpoint and retrieve that

value. Compute the mean of the two values retrieved, and that will be the Median (if there are only 2

elements to begin with, you'll simply compute the mean of those two elements):

 lngOffset = (lngRecCount / 2) - 2

 If lngOffset >= 0 Then

 rsMedian.Move -lngOffset - 1

 End If

 dblTemp1 = rsMedian("DataValue")

 rsMedian.MovePrevious

 dblTemp2 = rsMedian("DataValue")

 varMedian = (dblTemp1 + dblTemp2) / 2

 End If

 Else

If no records were returned, the Median will be Null:

 varMedian = Null

 End If

Clean up after yourself, and the function's complete:

 rsMedian.Close

 Set rsMedian = Nothing

 Set dbMedian = Nothing

 DMedian = varMedian

End Function

You'd use this function in the same method as DAvg:

?DMedian("Total", "DiceRolls")

 9.5

Okay, can I determine the Mode values of my data as well?

Determining the Mode is complicated by the fact that it's possible for more than one value to be the mode.

Therefore, the DMode function needs to be able to return an array. (The definitions for Expr, Domain and

Criteria are the same as above):

Function DMode(_

 Expr As String, _

 Domain As String, _

 Optional Criteria As String = "" _

) As Variant

Dim dbMode As DAO.Database

Dim rsMode As DAO.Recordset

Dim lngLoop As Long

Dim lngMaxFreq As Long

Dim strSQL As String

Dim varMode As Variant

As before, a SQL statement must be created. This time, though, the SQL statement doesn't simply return all

of the qualifying values in the domain. Instead, it's going to be an Aggregate query that returns each unique

value in the domain, plus how many times that value occurs. Further, it's going to return the values in

descending order of occurrence. In other words, it'll return the value that occurs the most times, followed by

the value that occurs the second most times and so on until the value that occurs the fewest times.

 strSQL = "SELECT [" & FieldName & "], " & _

 "Count(*) AS Frequency " & _

 "FROM [" & TableName & "] "

 If Len(WhereClause) > 0 Then

 strSQL = strSQL & _

 "WHERE " & WhereClause & " "

 End If

 strSQL = strSQL & _

 "GROUP BY [" & FieldName & "] "

 strSQL = strSQL & "ORDER BY 2 DESC, 1 ASC"

Instantiate a recordset, using the SQL Statement created above, to return all of the relevant data from the

domain:

 Set dbMode = CurrentDb()

 Set rsMode = dbMode.OpenRecordset(strSQL)

Make sure that records were actually returned.

 If rsMode.BOF = False And _

 rsMode.EOF = False Then

Assuming records were returned, determine how many occurrences there were for the value that occurred

the most number of times and save that value in a variable lngMaxFreq. Loop through the recordset until a

value with fewer occurrences is encountered. For each value that occurs the same number of times as what's

stored in lngMaxFreq, add the value to an array. The contents of that array will represent the Mode value(s)

for the domain:

 varMode = Array()

 lngLoop = 0

 lngMaxFreq = rsMode("Frequency")

 Do While rsMode("Frequency") = lngMaxFreq

 ReDim Preserve varMode(0 To lngLoop)

 varMode(lngLoop) = rsMode(FieldName)

 lngLoop = lngLoop + 1

 rsMode.MoveNext

 Loop

 Else

 varMode = Null

 End If

Clean up after yourself, and the function's done:

 rsMode.Close

 Set rsMode = Nothing

 Set dbMode = Nothing

 DMode = varMode

End Function

Unfortunately, it's not quite as easy to use this DMode function as it is to use the other Domain functions.

If you were to type

?DMode("Total", "DiceRolls")

you'd get a Run Time error 13 (Type Mismatch).

Instead, use code like the following:

Sub DetermineMode(_

 Expr As String, _

 Domain As String, _

 Optional Criteria As String = "" _

)

On Error GoTo Err_DetermineMode

Dim lngCount As Long

Dim lngLoop As Long

Dim strField As String

Dim strTable As String

Dim varMode As Variant

 varMode = DMode(Expr, Domain, Criteria)

 If IsNull(varMode) Then

 Debug.Print "No Mode found"

 Else

 lngCount = UBound(varMode) - _

 LBound(varMode) + 1

 If lngCount = 1 Then

 Debug.Print "One Mode value found:"

 Else

 Debug.Print lngCount & _

 " Mode values found:"

 End If

 For lngLoop = LBound(varMode) To _

 UBound(varMode)

 Debug.Print _

 (lngLoop - LBound(varMode) + 1) & _

 ": " & varMode(lngLoop)

 Next lngLoop

 End If

End Sub

Using this routine, you'll see something like:

Call DetermineMode("Total", "DiceRolls")

One Mode value found:

1: 8

What happens, though, if our sample data is slightly different?

Roll Total
1 14

2 14

3 8

4 8

5 11

6 8

7 10

8 9

9 6

10 5

11 14

12 10

Table 2: AlternateDiceRolls

Now, it turns out that the Mean and Median for this data is exactly the same as before:

?DAvg("Total", "AlternateDiceRolls")

 9.75

DMedian("Total", "AlternateDiceRolls")

 9.5

However, now we have two different values that are both Modes for our data:

?DetermineMode("Total", "AlternateDiceRolls")

2 Mode values found:

1: 8

2: 14

What if my numbers aren't in a table and I want to compute the median?

VBA allows you to use the keyword ParamArray as the last argument in the list of arguments for a function

or subroutine to indicate that the final argument is an Optional array of Variant elements. This means that

you can pass an arbitrary number of values to the routine, and you can treat that list of values as a single

array.

This means that it's possible to declare a function as

Function Median(_

 ParamArray DataPoints() As Variant _

) As Variant

then call the function as Median(3, 6, 1, 2, 4) and have it return a value.

Within the function, you have an array DataPoints that you need to sort in ascending order, then find the

middle position to determine the median.

There are a couple of "gotchas". You cannot pass the ParamArray array to another routine, so it's not just a

simple matter of calling a sort routine to arrange the numbers into ascending order.

A second issue, though, means that passing the array to a sort routine probably wouldn't be a good idea

anyhow. Since you can pass anything to the array, it's necessary to validate all of the values before you try

to compute the median. How would you determine Median("red", "green", "blue")?

One way to solve both issues is to create a new array within the routine, only transferring valid (i.e.

numeric) arguments into the new array. Assuming that at least one numeric value ends up in this new array,

sort the new array and compute the median.

While I don't intend to discuss the routine I used for doing the sort (there are plenty of comments in the

code), something like the following will let you compute the median for an arbitrary number of values:

Function Median(_

 ParamArray DataPoints() As Variant _

) As Variant

Dim lngArraySize As Long

Dim lngCurrPos As Long

Dim lngLoop As Long

Dim lngPos1 As Long

Dim lngPos2 As Long

Dim varValues() As Variant

 If IsMissing(DataPoints) = True Then

 Median = Null

 Else

 ReDim varValues(LBound(DataPoints) To _

 UBound(DataPoints))

 lngCurrPos = LBound(DataPoints) - 1

 For lngLoop = LBound(DataPoints) To _

 UBound(DataPoints)

 If IsNull(DataPoints(lngLoop)) = False Then

 If IsNumeric(DataPoints(lngLoop)) Then

 lngCurrPos = lngCurrPos + 1

 varValues(lngCurrPos) = _

 DataPoints(lngLoop)

 End If

 End If

 Next lngLoop

 If lngCurrPos >= 0 Then

 ReDim Preserve varValues(_

 LBound(DataPoints) To lngCurrPos)

 Call QuickSortVariants(varValues, _

 LBound(varValues), UBound(varValues))

 lngArraySize = UBound(varValues) - _

 LBound(varValues) + 1

 If lngArraySize Mod 2 = 0 Then

 lngPos1 = lngArraySize / 2 - 1

 lngPos2 = lngPos1 + 1

 Median = (varValues(lngPos1) + _

 varValues(lngPos2)) / 2

 Else

 lngPos1 = (lngArraySize - 1) / 2

 Median = varValues(lngPos1)

 End If

 Else

 Median = Null

 End If

 End If

End Function

Plugging our original values into this function, we get:

?Median(14, 13, 8, 8, 12, 8, 10, 9, 5, 3, 17, 10)

 9.5

I'm not sure there's really any reason for such a function: as far as I'm concerned, requiring the ability to

calculate the median like this is likely an indication that your tables haven't been properly normalized.

However, now you have a function if you need it.

Doug Steele has worked with databases, both mainframe and PC, for many years. Microsoft has recognized him as an

Access MVP for his contributions to the Microsoft-sponsored newsgroups. Check http://I.Am/DougSteele for some

Access information, as well as Access-related links. You can reach him at AccessHelp@rogers.com, but note that

personal replies are not guaranteed. However, please don't hesitate to send ideas for future columns or, even better,

complete columns!

